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Abstract-This paper deals with the elastic interaction between a main-crack and a parallel micro­
crack in an orthotropic plane elastic solid. The pseudo-traction method proposed by Chen [Engng
Fract. Mech. 20, 591-597 and 767-776 (l984a, b)], and Horii and Nemat-Nasser [Int. J. Solids
Structures 21, 731-745 (1985)] in isotropic cases is extended into orthotropic cases. After introducing
two kinds of fundamental solutions, a system of Fredholm integral equations is derived from which
the interaction effect of the release of residual stresses due to near-tip micro-cracking is evaluated.
Numerical results are shown in figures and tables. Some useful conclusions are discussed.

I. INTRODUCTION

The mechanism of fracture of a material in the microscale is always concerned with micro
defects such as cracks, voids and inclusions among which micro-cracking has received
considerable attention in recent years. Elastic interaction effect between a main-crack and
micro-cracks in isotropic materials was well studied and a number of analytical solutions
were reported in the literature [see e.g. Hoagland and Embury (1980); Gross (1982);
Chudnovsky and Kachanov (1983); Chudnovsky et al. (1987); Rose (1986); Horii and
Nemat-Nasser (1985, 1987); Gong and Horii (1989); Gong and Meguid (1991);
Ukadgaonker and Naik (1991a,b); Chudnovsky and Wu (1991)]. A history review was
performed by Kachanov (1993). However, the same problems in anisotropic cases have
just brought a renewed interest [see e.g. Binienda et al. (1991); Hwu (1991)].

A method called the "pseudo-traction" method was proposed by Horii and Nemat­
Nasser (1985). In fact, almost the same method was proposed a little earlier by Chen
(1984a,b). The method was modified by Horii and Nemat-Nasser (1987) for the case when
micro-cracks are situated very close to the main-crack tip.

The aim of the present work is to extend the method into anisotropic cases with a
micro-crack parallel to a main-crack. After introducing two kinds offundamental solutions,
a system of Fredholm integral equations is derived. The residual stresses at the location of
the near-tip micro-cracking presented by Sih and Chen (1981) are released and the inter­
action effect of the release is then evaluated.

A particular kind of material is considered in detail which is concerned with the
orthotropic material used by Bowie and Freese (1972). The effect of material and geo­
metrical parameters upon the change in the stress intensity factors is discussed. Numerical
results are shown in figures and tables. A comparison with those reported in the literature
is performed for giving the verification.

It is found that the parameters of orthotropic materials have no influence on the
interaction effect under purely Mode I loading conditions when the main-crack and the
micro-crack are collinear along the axis of material symmetry. However, the parameters
significantly influence the interaction effect when a non-collinear micro-crack is created

1877



1878 Y.-H. CHEN and N. HASEBE

very close to the tip of the main-crack. The dependence of the effect on the orthotropic
parameters is studied in detail which is found to be very sensitive in some ranges of the
parameters.

It is also found that the interaction effect may be either amplification or shielding as
in isotropic cases (Rose, 1986; Gong and Horii, 1989). However, the transition from an
amplification effect to a shielding effect is significantly influenced by the parameters of
orthotropic materials.

2. FUNDAMENTAL SOLUTIONS

The investigation performed in the present paper starts from the following fundamental
solutions (see Fig. 1(a,b» in which a crack of length 2a in an anisotropic plane elastic solid
is considered.

From the well-known Lekhnitskii theorem (1963), the stress representations in an
anisotropic plane elastic solid can be put in the following form:

ax = 2Re (ST4>'(Z\)+S~t/!'(Z2»

a r = 2Re (4)'(Z\)+t/!'(Z2))

axy = -2Re (SI4>'(ZI)+S2t/!'(Z2»

(la)

(1 b)

(Ic)

where 4>(ZI) and t/!(Z2) are complex potentials with respect to the complex arguments Z\
and Z2' respectively; the prime denotes differentiation with the respective complex argu­
ments Z\ or Z2; ZI = X+SIY and Z2 = X+S2Y' S\, S2 and their conjugates are roots of
the characteristic equation which are either complex or purely imaginary and cannot be
real (Lekhnitskii, 1963):

(2)

where b\ J, b 16, b l2 , b26, b 66, and b 22 are real constants of the anisotropic material.
(A). The first kind of fundamental solution is considered in Fig. l(a) in which the

loading involves only normal concentrated traction applied on both the crack surfaces in
the y-direction. Hence, the shear stress ax\, vanishes everywhere along the line of loading
symmetry Y = 0, which is not necessarily the axis of material symmetry unless orthotropic
is invoked (Sih and Chen, 1981).

Using eqn (Ie), the condition axy = 0 for Z\ = Z2 = t on the real axis gives
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Fig. I. Normal concentrated tractions or shear concentrated tractions acting on both faces of a

typical crack.
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or

for all t (3a)

where

<1>1 (ZI) = ¢'(ZI)

'I'1(ZZ) = ljJ'(Zz).

(3b)

(4a)

(4b)

Letting ZI and Zz approach the upper (y > 0) and lower (y < 0) side of the crack,
eqn (lb) yields the following relations for 1tl < a:

(J; = (Sz~Sl)<I>i(t)+ (S;-~S;-)<I>l(t)

(Jy- = (Sz~SI)<I>I(t)+ (SZ;ZSl) <l>i (t)

(Sa)

(Sb)

where the superscripts + and - denote the boundary values of those quantities on the
upper and lower side of the crack, respectively.

Following the work performed by Sih and Chen (1981), the problem stated in Fig.
l(a) can be reduced to the following Riemann-Hilbert problem:

{(S2~SI)<I»(t)+(S;-~S;-)<I>I(t)r+ {(SZ~SI )<I>l(t)+ (~~S;-)<I>l(t)r
= -2PJ(t-s) for It I < a (6a)

=0 forltl<a (6b)

where J denotes the Dirac function.
Assuming the stress at infinity to vanish, then <l>1(Z)) -+ o(1/Z)) for large values of ZI

and the solutions to eqns (6a, b) are:

(7a)

(7b)

Once <l>1(Z)) is eliminated from eqns (7a, b), the following result is given:

(8a)

The similar procedure can be performed for'll I(ZZ), without going into details, it follows
that
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PSI r~2_-;2
'1'1 (Z2) = - 2-n-(-s--Z-2-)(-S-I---S-2) ~ Zi _---;;2 . (8b)

Consequently, the stresses at any point in the xy-plane can be given as follows (Bowie and
Freese, 1972):

inn-ifnI = (Jy-i(Jxy = (I +iS 1)<I>j(Zj)+(1+iS2)'I'j(Z2)+(I+iS j)<I>j(ZI)

+(I+iS2)'I'j(Z2)' (9)

From eqn (8a) the stress intensity factors at both tips are given (Sih and Liebowitz, 1968):

(lOa)

(lOb)

(B). The second kind of fundamental solution is considered in Fig. I (b) in which the
skew-symmetric loading involves only shear concentrated traction applied on both crack
surfaces in the x-direction.

Using eqn (lb), the condition (Jy = 0 for Zj = Z2 = t on the real axis gives

for all t. (1Ia)

or

Hence,

(J7, = (S2-St)<I>i(t)+(S2-SI)<I>Z(t) for ItI < a

(J;; = (S2-Sj)<I>2(t)+(S;-S-;-)<I>i(t) for It I < a

and the following Riemann-Hilbert problem is reduced:

(II b)

(12a)

(l2b)

{(S2 - Sj)<I>2(t) + (S2 - ~)<I>2(t)} + + {(S2 - S 1)<I>2(t) + (S2 - St)<I>2(t)}-

= -2Q<5(t-s) for It I < a (l3a)

{(S2 - S t)<I>2(t) - (S2 - S j )<1>2 (t)} + - {(S2 - Sj)<I>2(t) - (S2 - ~)<I>2(t)}-

=0 for ItI <a. (l3b)

The solution of eqns (l3a) and (l3b) is:

(l4a)

Repeating the above procedure for 'I' 2(Z2)' it follows that

(l4b)

The stress intensity factors at both tips can then be evaluated (Sih and Liebowitz, 1968):

(l5a)
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and

(15b)

The stresses at any point in the xy-plane can be given as follows:

f,n - ift, = (Ty - i(Txy = (1 + is1)<I>2(ZI) + (1 + is2)'P2(Z2) + (1 +is1)<I>2(ZI)

+(1+iS2)'P2(Z2)' (16)

3. FREDHOLM INTEGRAL EQUATIONS FOR SOLVING THE INTERACTION PROBLEM
BETWEEN A MAIN-CRACK AND A MICRO-CRACK

Considering an arbitrarily located micro-crack of length 2a, (Fig. 2) which is near the
right tip of the main-crack and also parallel to the main-crack. The main-crack is assumed
much larger than the length of the micro-crack and the distance between the right tip of
the main-crack and the center of the micro-crack (the so-called small-scale approach) :

a»aJ, a»d. (17)

Using the "pseudo-traction" methods proposed by Chen (1984a,b) and Horii and
Nemat-Nasser (1985) in isotropic cases, the present problem shown in Fig. 2 is decomposed
into two subproblems, each of which contains one single crack. It is assumed that p(t) and
q(t) indicate the really residual stresses to be released on the location of the micro-crack
which are known functions and that Po(x), Qo(x), P,(t) and QI(t) are so-called pseudo­
tractions (Horii and Nemat-Nasser, 1985; Gong and Horii, 1989) to be determined.

Using the fundamental solutions mentioned in the above section and the superimposing
technique, the above problem can be reduced to the following Fredholm integral equations
as Chen (1984a,b) did in isotropic cases:

(-a<s<a)

(-a<s<a)

(18a)

(18b)

(18c)

(18d)

where the eight kernel functions (fnn,IO), (/,n,IO), (f",,10), (1,/,10), (fnn,OI), (f,n,OI), (/"/,01), and
(1",01) have been given by eqns (9) and (16), respectively. The subscripts n, t, 0, 1 have
definite meanings: n indicates the normal quantity; t indicates the tangential quantity, 0

y

p(s)+iq(s)
~;::;;::;l
L----1'--L--' p(s)+iq(s)

x

---2a---

Fig. 2. A micro-crack parallel to a main-crack.
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indicates the main-crack; I indicates the micro-crack. For example, /"1,IO(t,S) means the
contribution of the unit normal concentrated traction acting on the micro-crack surfaces
at the point t to the main-crack in the tangential direction at the point s (Chen, 1984a,b).

Using the Chebyshev numerical integration, the following linear system with 4M
unknowns Po(sJ, Qo(sJ, P1(tJ and QI(t j ) (i,j = 1,2, ... , M) can be given

M M

Po(s;)+ L PI (t)fnn.]()(t j , S;)b j + L Ql(t)f,n.JO(tj ,s;)i'5j = 0 i = 1,2, ... ,M (19a)
j~ 1 j~ 1

M M

Qo(s;)+ L P 1(tJfnl.lo(t j ,Sj)i'5j+ L QI (t)f,t,I0(tj, Sj)b j = 0 i = 1,2, ... ,M (19b)
j~ 1 j~ I

M M

Pj(tj )+ L PO(S;)fnn.OI(S;, Ui'5;+ L QO(S;)f,n.Ol(Sj, tJb j = p(tj ) j = 1,2, ... ,M (19c)
j= I i= I

M M

QJ(tJ+ L P o(S;)/"I.OI(S;,tj )i'5;+ L QO(SJf,I.OI(s;,tj)b; = q(tj ) j= 1,2, ... ,M (l9d)
j= 1 i= 1

where

(2i-l)n
S· = a'cos

1 2M

(2j- I)n
t = al'cos---
I 2M

an . (2i-l)nb = --' Sill .__.._..
1 M 2M

(20a)

(20b)

(20c)

(20d)

and b; and bj are the array encountered in the Chebyshev integral rule.
Once the system is solved, the incremental values of stress intensity factors at both tips

of the main-crack and the stress intensity factors at both tips of the micro-crack can be
evaluated by using the following quadrature rule (Erdogan, 1978):

and

f+"' JL<!~~t_ ~ ~ I g{a
l
'cos (2m-l)n}.

-a, ~_t2 M m~ 1 2M

Finally, it follows that: for the main-crack

LlKRight = i~ I P {a' cos (2m -=I)~} ,{I + cos <3.m - n~}
1 M m~1 0 2M 2M

LlKLeft = _0_a I. P {a. cos (2m - I )n} . {I _ cos .::...(2_m_---.-:-1)_n}
I M m~l 0 2M 2M

LlKRight = 11!.. I Q {a' cos (2m - I)n}, {I +cos .::...(2_m_---.-:-l)_n}
2 M m~l 0 2M 2M

LlKLeft = fi. I. Q0 {a' cos (2~ - I)n} .{I _ cos ~2..m ~~}
2 M m~1 2M 2M

(2Ia)

(2Ib)

(22a)

(22b)

(22c)

(22d)
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and for the micro-crack

KRigh1 = _A_a_1 ~ P {a .cos (2m-l)n}. {I +cos_(2_m-,----_I)_n}
1 M m~1 112M 2M

Left _ A ~ {. (2m-l)n}. {_ (2m-l)n}
K} - M L... PI al cos 2M I cos 2M

m=l

KRighl=_A_al ~ Q {a .cos(2m-l)n}.{I+COs(2m-l)n}
2 M L, 112M 2M

m=l

Left A M { (2m-l)n}.{ (2m-l)n}
K2 = M m~1 QI al ·cos 2M I-cos 2M .

(23a)

(23b)

(23c)

(23d)

4. THE RELEASE OF RESIDUAL STRESSES DUE TO THE NEAR-TIP MICRO-CRACKING

Assuming the specified self-balancing normal traction (10 on the main-crack surfaces,
the stress intensity factors at both tips and the near-tip stress fields are given by Sih and
Chen (1981):

K~(Right and Left) = (10~ (24)

K~ {I ( SIS2 )} O( 0)(1 = --Re - + r
Y fi SI -S2 Jcos 0+S2· sin 0 Jcos O+SI· sin 0

(25b)

(25c)

where

0= n+tan- I (~)
x-a

for x > a

for x < a, y > a

(26a)

(26b)

(26c)

0= -n+tan- I(~) for x < a andy < a.
x-a

(26d)

The residual stresses on the micro-crack location to be released can be expanded into
the Taylor series form as treated by Gong and Horii (1989) from which the right sides of
eqns (l9c, d), Le. p(tJ and q(tJ, are evaluated by taking the dominant terms in the series
and then the so-called Oth order solution and the first order solution are given. However,
this treatment may introduce some unexpected errors when the micro-crack is situated very
close to the main-crack tip [see e.g. Table I in Gong and Horii (1989)]. In the present
investigation, the residual stresses to be released are evaluated directly from eqns (25b, c)
which can give any desirable accuracy.
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Table 1. The normalized stress intensity factor Kj"',i Ki' at the right tip of
the main-crack influenced by a collinear micro-crack when setting

P,P, = 1.00001 in eqn (29a) and P, "" P, in eqn (29b)

Approximate
(first order)

dla, Exact (Gong and Horii. 1989) Present solutions

1.1 1.652 1.329 1.651
1.2 1.387 1.260 1.386
1.3 1.274 1.21 [ 1.273
1.4 1.209 1.174 1.209
1.5 1.167 1.147 1.167
2.0 1.076 1.074 1.076

5. NUMERICAL RESULTS AND DISCUSSION

The analysis method presented in the above sections is programmed and a particular
kind of anisotropic material, i.e. an orthotropic material with purely imaginary charac­
teristic roots, is considered in detail for obtaining the major features of the interaction
problem. This kind of material was used numerically by Bowie and Freese (1972) and Chen
and Hahn (1989) for unidirectional fibre reinforced composites and the characteristic
equation (2) is simplified to the following form:

Under some circumstances, the characteristic roots are purely imaginary:

SI = ifJ,

S2 = ifJ2

where fJ I > 0 and fJ2 > 0, and

(27)

(28a)

(28b)

(29a)

(29b)

in which Ell and E 22 are the moduli of elasticity in the material principle directions, i.e x
and y axes, respectively; v12 is the Poisson's ratio; f.112 is the shear modulus in the xy-plane.

It should be mentioned that another kind of characteristic root could be found from
eqn (27) as treated by Sih and Chen (1981). However, in this paper only the purely imaginary
roots (28a, b) are considered.

Assuming that a main-crack in the orthotropic material is under purely Mode I loading
conditions and that the residual stresses due to a parallel near-tip micro-cracking are
released, the interaction effect can then be represented by the normalized stress intensity
factors at the right tip of the main-crack:

KJ;!AIK? = I + LlK~ight1K?

KrAIK? = LlK~ightIK?

(30a)

(30b)

It is seen from Tables 1 and 2 that the numerical results from the present investigation
coincide well with those in isotropic cases (Gong and Horii, 1989 when setting fJ I and fJ 2
or JE I dE 22 to be the limit values, i.e. fJ I = I and fJ 2 ~ I or E I ,IE 22 ~ 1. Consequentiy,
the analysis method proposed in the present investigation is verified which provides a



Interaction between a main-erack and a parallel micro-crack in an orthotropic plane elastic solid 1885

Table 2. The normalized stress intensity factors K~AIK? at the tips ofa collinear micro-crack when setting PI = 1
and P2 ~ I in eqns (29a, b)

Approximate (first order)
Exact (Gong and Rorii, 1989) Present solution

dial Right tip Left tip Right tip Left tip Right tip Left tip

1.1 0.655 1.469 0.660 0.967 0.655 1.474
1.2 0.610 1.138 0.623 0.892 0.610 1.138
1.3 0.579 0.979 0.593 0.831 0.579 0.978
1.4 0.555 0.877 0.567 0.781 0.554 0.877
1.5 0.534 0.805 0.545 0.738 0.534 0.805
2.0 0.464 0.611 0.469 0.594 0.463 0.611

1.12

1.10

1.08

1.06

1.04

1.02

0.96

0.88

~'~O::::::::::::::-- LO.I05n"

a =O.OOn" (1.076)

O.10n"
~- c:.0.15 n"

~-- L:.:.0.;20n"

~ L:O.:..:25n"

-- -.:-- fl1fl2

O.35n"
~------------.;'il"O.401r

~-------.::::OJO.50 n"

Fig. 3. The interaction effect K~AIK? due to the parallel near-tip micro-cracking in an orthotropic
elastic solid with SI = ip" S2 = ip2assumingalal = 100, dial = 2, PI = 1, and P2 > J.

reasonable accuracy when the micro-crack is situated very close to the right tip of the main­
crack.

Of the most interest is K'j'A/K~ against the angle (( (see Fig. 2) and the parameter
PtP2(JE11 /Ed which is plotted in Fig. 3 for PI P2 > I and in Fig. 4 for PIP2 < I, respec­
tively, assuming PI = 1.

It is found from Figs 3 and 4 that there is no influence of the orthotropic parameter
on the interaction effect K'j'A/!Cl when the main-crack and micro-crack are collinear along
the axis of material symmetry corresponding to at: = 0 and the results are just the same as
those in isotropic cases. This phenomenon can be explained by considering the near-tip
stress field (25b,c) as well as the complex potentials (8a, b) and (14a, b) in the limit cases
of () = O. It is seen that the residual stresses to be released for a collinear micro-crack
become
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1.0

f31' f32
0.401l'

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00
0.1 0.2 0.3

0.95

0.90

0.85

Fig. 4. The interaction effect K'i'AIK~ due to the parallel near-tip micro-cracking in an orthotropic
elastic solid with 8, = ip, and 8, = ip, assuming ala, = 100, dla, = 2, p, = I, and p, < 1.

(3la)

(31 b)

and the kernel functions in eqns (l8a, b) become

1 j£!;2_t2
/"n,OI = - (t ) -2--2n -x x-a

(32a)

1
Inn,IO = - ( _)ns-x

(32b)

Int,OI = In"lO = frn,Ol = fn"IO = fr'.OI = fr"IO = 0 (32c)

where x = x-d-a.
It is noted that all the terms of both sides of the Fredholm integral equations (18a~)

are independent of the parameters PI and P2' Therefore, the interaction effect of the
release of the residual stresses (31 a, b) due to the collinear near-tip micro-cracking will be
independent of the parameters.
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Table 3. The tendency of the normalized stress intensity factors K'YA
/ K'I

when setting p, = I and p, -+ 00 assuming a/a, = 100 and dial = 2

P,p, 10 25 64 100

0.10n 1.07171 1.06505 1.06233 1.06168
0.20n 1.03638 1.03240 1.03076 1.03036

0(
0.30n 1.004973 1.003594 1.002978 1.002924
0.40n 0.98184 0.98290 0.98326 0.98334
0.50n 0.96345 0.96709 0.96846 0.96877

It is also found from Figs 3 and 4 that the influence of the parameter on the effect is
not sensitive when the micro-crack is little diverged from the collinear situation, for example,
rt. < 9° (O.05n) in Fig. 3 and rt. < 18° (O.lOn) in Fig. 4. However, the influence increases very
sharply as rt. increases since the angle distribution of the residual stresses to be released, i.e.
eqns (25b, c), is seriously disturbed by the orthotropic parameters as rt. increases (Sih and
Chen, 1981).

In Fig. 3 the sensitivity is found to be large in the range of PIfl2 between 1 and 3
assuming PI = 1. However, the sensitivity becomes very small when PIP2 increases from 7.
It seems that asymptotical values for the effect could be found when setting P2 -+ 00.

Considering the complex potentials (8a, b) and (14a, b) and assuming PI = 1and P2 -+

00, it follows that

p Ja
2
-s

2
(33a)lim <D,(z,) = - -2--2

P,-co 2n(s-zl) zl-a

lim 'PI(z,) = 0 or O<Pz 3) for large P2 (33b)
Pz-OJ

lim <D 2(ZI) = 0 or O(pz ') for large P2 (33c)
fJ,,-oo

lim 'P 2(t2) = 0 or O(pz 3) for large P2 (33d)
fJ2- oo

and

KO ( I )lim (Jy = _1_ Re
P,-co ft Jcos (}+s, sin (}

. K? ( s, )hm (Jxy = -- Re .
P,-co ft Jcos (}+SI sin (}

(34a)

(34b)

Therefore, it is proved that the asymptotical values for the interaction effect are really
existent when setting PI = I and P2 -+ 00. The tendency of the values are shown in Table
3.

It is also found from Figs 3 and 4 that the interaction effect may be either increased,
i.e. the so-called amplification effect corresponding to KrAIK? > I, or decreased, i.e. the
so-called shielding effect corresponding to KrAIK? < 1. However, the transition from a
shielding to an amplification effect is dependent not only on the position ofthe micro-crack
(dla,), but also on the parameter of orthotropic material.

The numerical results for the so-called neutral-shielding angle rt.N for which the tran­
sition occurs against the values of P,P2 are shown in Fig. 5 and Table 4, respectively,
assuming dial to be a constant.

It is noted that the influence of the orthotropic parameter PIP 2 on the angle rt.N is very
large in the range of P2 < 2 and PI = I and that the influence decreases when P2 increases.
Moreover, it seems that an asymptotical value of the angle rt.N exists when PI = I and
P2 -+ 00.
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0.45". ,--------------------=l 0

so
a,

0.4".

0.35".

~-------.::JSOO

0.3". '-- --'---- -'-- -----.J'-- -l.__

3

Fig. 5. The neutral angle IXNagainst the orthotropicparameters PI and P2 assumings, = iPh S2 = iP2.
a/al = 100, d/al = 2, and PI = I.

Table 4. The neutral angle IXNagainst the orthotropicparameters assuming 8 1 = iP h 8 2 = iP2, a/al = 100, d/al = 2
and PI = 1

PIP2 0.125 0.250 0.500 0.750 oo1סס.1 1.250 1.500 2.000 2.500 3.000 3.500 4.000

0.3888n 0.3937n 0.3841n 0.3726n 0.3626n 0.3548n 0.3487n 0.3405n 0.3350n 0.3315n 0.3295n 0.3275n
69.98° 70.87° 69.J40 67.07° 65.26° 63.86° 62.77° 61.29° 60.30° 59.67° 59.31° 58.95°

To enhance the present investigation, a particular material system, i.e. 8-ply uni­
directional graphite~poxy laminate fabricated from Hercules AS-4-3501-06 tapy, is chosen
which was used by Binienda et al. (1991). The material constants are

Ell = 21.08e+6psi

E 22 = 1.5e+6psi

GI2 = 0.98e+6psi

V12 = 0.3. (35)

The characteristic roots are purely imaginary when two preferred directions of the
material coincide with the reference axes:

where

or

for 90° transformation of the axes.

8 1 = iPI
8 2 = iP2

PI = 4.49611067

P2 = 0.83378232

PI = 1.19935381

P2 = 0.22241444

(36)

(37)

(38)
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Fig. 6. Comparison of the interaction effect for a typical orthotropic material with those for an
isotropic material.

Numerical results are shown in Fig. 6 for three kinds of roots (37), (38) and /31 = 1,
/32 ~ 1 (isotropic case). It is found that the main-micro-crack interaction effect may be
either amplification (KflK? > 1) or shielding (KflK? < 1) which seems to be dependent
mainly on the local angle a and the characteristic roots. It is noted that the high strength
fibre-reinforced composite is not always of advantage in this interaction problem for
decreasing the amplification effect and increasing the shielding effect. For example, the
amplification effect corresponding to the roots (38) is shown to be much larger than those
corresponding to the roots (37) and the isotropic case in the range of a between 0.15n and
0.40n. However, the shielding effect corresponding to the roots (18) is also shown to be
much larger than those corresponding to other two kinds of the roots in the range of a
between 0.40n and 0.70n. Finally, it is noted also that the so-called neutral shielding angle
aN corresponding to the two orthotropic cases really diverges from those corresponding to
the isotropic cases.

6. CONCLUSION AND REMARKS

(l) The orthotropic parameter /3 1/32with /3 I= I has no influence on the main-micro­
crack interaction effect Kf'A/K? when the main- and micro-cracks are collinear along the
axis of material symmetry and the main-crack is under purely Mode I loading conditions.

(2) The influence of the parameter on the interaction effect is small when the micro­
crack is little diverged from the collinear situation. However, significant influence on the
effect could be induced when the micro-crack is far apart from the collinear situation, for
example, a > 9° for the cases of /3 1= 1 and /3 2> 1 or a > 18° for the cases of /31 = 1 and
/32 < 1.

(3) There are asymptotical values for the influence of the orthotropic parameter /31/32
on the interaction effect when setting /3 I = 1 and /32-+ 00.

(4) The neutral-shielding angle aN is sensitively dependent on the orthotropic parameter
/31/32when /31 = 1 and /32 < 2. The dependence decreases when /32increases from 2.

(5) The high strength fibre-reinforced composite is not always of advantage in the
interaction problem, whether the orthotropic nature of the composite decreasing the ampli­
fication effect or increasing the shielding effect is dependent not only on the characteristic
roots, but also on location angle a.
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